Series NMVL and NMX

LIQUID INJECTION VALVES

SUCTION PRESSURE CONTROLLED, INTERCHANGEABLE ORIFICE CARTRIDGES

PRODUCT DATA

Application

Honeywell thermostatic liquid injection valves series NMVL and NMX are used in refrigeration applications to reduce the temperature of the suction gas.

Depending on the superheat of the compressor suction gas, liquid refrigerant is injected into the suction line. The refrigerant is evaporating and thereby the suction gas is cooled down.

Suitable for plants in general refrigeration and for serial products such as air driers, dehumidifiers, chiller units or ice-making machines with hot gas bypass control valves, for temperature reduction in multiple stage units and for suction gas cooled compressors.

Materials

Body, base brass

Thermal head stainless steel
Connections copper or brass

Features

- · Suction gas controlled liquid injection valves
- Part programme containing:
 Valve body head, orifice cartridge, connection base
- Honeywell NMVL:
 - Only one valve body head needed both for internal and external pressure equalisation
 - Connection for pressure coupler integrated in the solder base
- solder base two-way or angle construction
- Honeywell NMX:
 - Balanced port
 - External pressure equalisation integrated in the valve body head
 - solder base two-way or angle construction
 - flare base two way construction
- · Adjustable superheat setting
- Extreme durable due to stainless steel head and stainless steel diaphragm welded using protective gas
- · Interchangeable orifice cartridges
- · Liquid charge
- Refrigerants: R134a, R22, R404A, R407C, R507 Further refrigerants on request.

Specification

Bulb diameter

Nominal capacity range 0.52 to 75.1 kW R22

(small orifice graduation for optimal control behaviour)

Temperature range -50 °C to +65 °C

Maximum pressure PS29 barMaximum test pressure32 barMax. ambient temperature70 °CMax. bulb temperature70 °C

Static superheat See table on page 2
Length of capillary tube NMVL: 1.5 m

NMX: 3.0 m

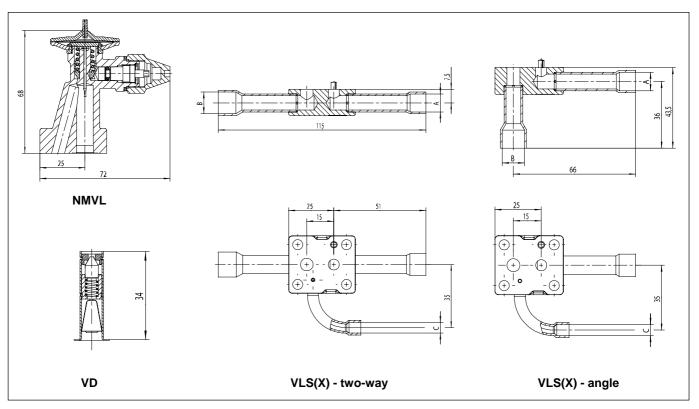
NMVL: 12 mm NMX: 16 mm

Thermal Charges and Static Superheat

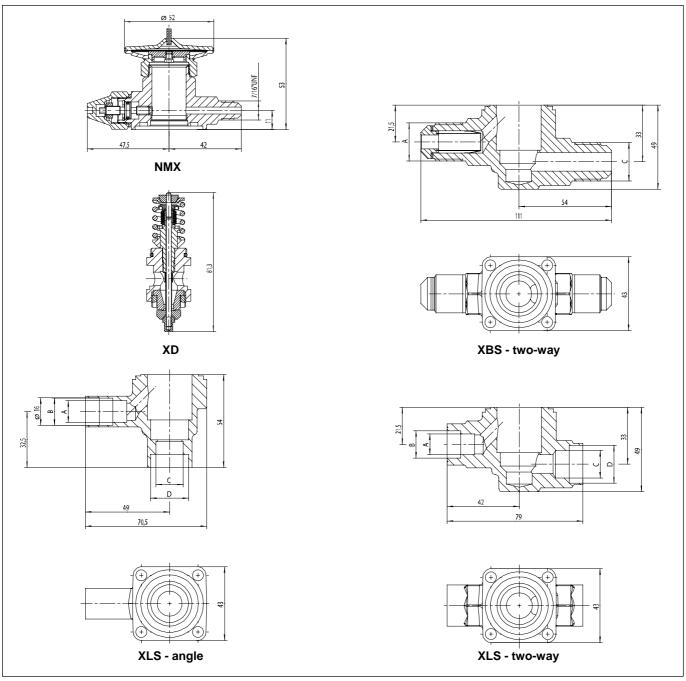
Code for thermal	Superheat						
charge	R134a	R22	R404A	R407C	R507		
DA	-	15 K	21 K	12 K	21 K		
TA	15 K	30 K	35 K	26 K	35 K		
LB	30 K	45 K	-	40 K	-		

Further refrigerants on request.

Capacities


Туре	Orifice size	Nominal capacity (kW*)					
		R134a	R22	R404A	R407C	R507	
	0.3	0.36	0.52	0.36	0.50	0.36	
	0.5	0.69	0.99	0.68	0.95	0.69	
	0.7	0.96	1.4	0.97	1.3	0.98	
	1.0	1.4	2.0	1.4	1.9	1.4	
	1.5	2.2	3.2	2.2	3.1	2.3	
NMVL	2.0	2.9	4.0	2.8	3.9	2.9	
	2.5	4.0	5.8	4.1	5.6	4.1	
	3.0	6.6	9.3	6.5	8.9	6.6	
	3.5	8.7	12.2	8.6	11.7	8.7	
	4.5	11.8	17.0	12.0	16.4	12.1	
	4.75	15.9	22.4	15.8	21.6	15.9	
	4.5	11.8	17.0	12.0	16.4	12.1	
NMX	4.75	15.9	22.4	15.8	21.6	15.9	
	5	20.0	29.1	20.5	28.0	20.7	
	6	27.6	42.4	29.8	40.8	30.1	
	7	35.3	54.5	38.3	52.5	38.7	
	8	43.3	64.1	45.1	61.8	45.6	
	10	51.0	75.1	52.8	72.3	53.3	

Capacities are based on to = +4 °C. tc = +38 °C and 1 K subcooled liquid refrigerant entering the valve. For other operating conditions see capacity charts in Honeywell catalogue or consult the Honeywell software.


The superheat is based on $t_0 = +0$ °C.

Dimensions and Weights

Туре		Connections					
	Inlet (A)	Outlet (B)	Pressure equalizer (C)	(kg)			
NMVL	-	-	-	approx. 0.43			
VD	-	-	-	approx. 0.02			
	6 mm ODF	10 mm ODF	-				
	1/4" ODF	3/8" ODF	-				
VLS	10 mm ODF	12 mm ODF	-	opprov 0.16			
angle	3/8" ODF	1/2" ODF	-	approx. 0.16			
	12 mm ODF	16 mm ODF	-				
	1/2" ODF	5/8" ODF	-				
	6 mm ODF	10 mm ODF	6 mm ODF				
	1/4" ODF	3/8" ODF	1/4" ODF]			
VLSX	10 mm ODF	12 mm ODF 6 mm ODF					
angle	3/8" ODF	1/2" ODF	1/4" ODF	approx. 0.17			
	12 mm ODF	16 mm ODF	6 mm ODF				
	1/2" ODF	5/8" ODF	1/4" ODF				
	10 mm ODF	12 mm ODF	-				
VLS	3/8" ODF	1/2" ODF	-	0.40			
two-way	12 mm ODF	16 mm ODF -		approx. 0.16			
	1/2" ODF	5/8" ODF	-				
	10 mm ODF	12 mm ODF	6 mm ODF				
VLSX	3/8" ODF	1/2" ODF	1/4" ODF	0.47			
two-way	12 mm ODF	16 mm ODF	6 mm ODF	approx. 0.17			
	1/2" ODF	5/8" ODF	1/4" ODF				

Туре		Connections					
	Inlet (A) + (B)	Outlet (C) + (D)	Pressure equalizer	(kg)			
NMX	-	-	7/16" UNF	approx. 0.6			
XD	-	-	-	approx. 0.14			
XLS two-way	12 + 16 mm ODF	16 + 22 mm ODF	-				
	1/2" + 5/8" ODF	5/8" + 7/8" ODF	-	approx. 0.41			
XLS angle	12 + 15 mm ODF	16 + 22 mm ODF	-	0.22			
	1/2" + 5/8" ODF	5/8" + 7/8" ODF	-	approx. 0.32			
XBS two-way	7/8" UNF	7/8" UNF	-	approx. 0.49			

Type Code / Order Information (Part Programme)

1. Valve body head

	NMVL	DA	١
Series (NMVL, NMX)			
Code for thermal charge			

2. Orifice cartridge

	VD	0.5
Series (VD, XD)		
Orifice size		

3. Connection base

	VLS	Χ	10 mm ODF x 12 mm ODF V	N
Series (VLS, XLS, XBS)				
Pressure equalizer VLS: X = external () = internal				
Connection size (Inlet x Outlet)				
D = two-way construction W = angle construction				

Installation

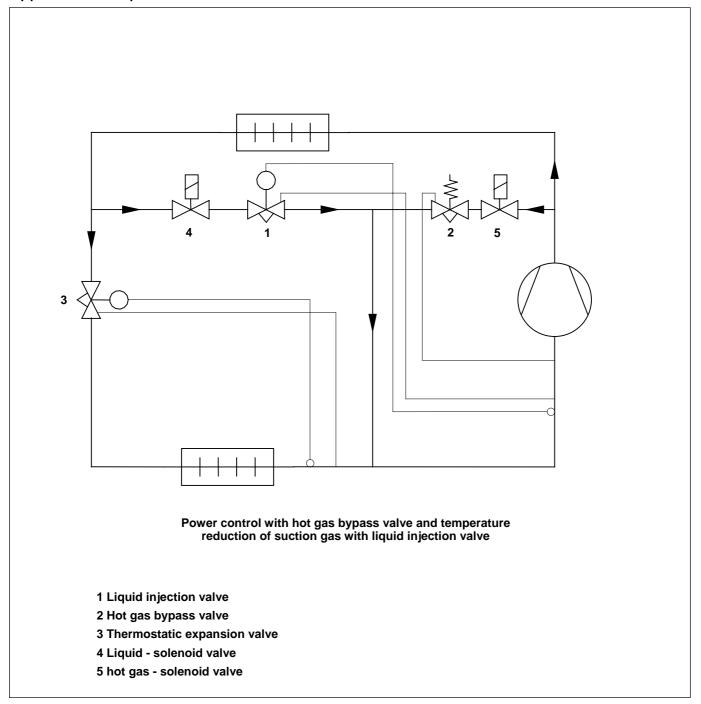
- The valves may be installed in any position.
- The external pressure equaliser line (VLSX and NMX) should be 6 mm or 1/4" in diameter. It is connected to the suction line downstream of the remote bulb. An overbow is recommended in order to prevent the ingress of oil into the equaliser line.
- The bulb should preferably be positioned on the upper half
 of a horizontal suction line but never after a liquid trap. As
 a general rule, bulbs of liquid injection valves should be
 insulated to prevent them being affected by the ambient
 temperature.
- Do not bend or squeeze the bulb when tightening the bulb clamp.
- Never quench the solder base with water after soldering, this may cause cracks and distort the sealing surfaces.
- When tightening flare nuts of the flare connections grip at wrench flats on the valve body.
- The screws fixing the valve body head to the base must be tightened in diagonal sequence. Torque 12 Nm for NMVL and 20 Nm for NMX.
- · Constructive modifications at the valve are not allowed.

Superheat Adjustment

In general the Honeywell liquid injection valves should be installed with the factory setting for the used refrigerant unaltered.

This superheat adjustment is calibrated for the above mentioned superheat and optimal control behaviour. However, should it be necessary to adjust the superheat, turn the adjusting spindle as follows:

Turning clockwise = reduced refrigerant mass flow,


increase of superheat

Turning = increased refrigerant mass

counterclockwise flow, decrease of superheat

One turn of the adjusting spindle alters superheat setting by approx. 0.55 bar for NMVL and 0.3 bar for NMX.

Application Sample

Honeywell

Automation and Control Solutions

Honeywell GmbH Hardhofweg

74821 Mosbach/Germany Phone: +49 (0) 62 61 / 81-475 Fax: +49 (0) 62 61 / 81-461

E-Mail: cooling.mosbach@honeywell.com

www.honeywell-cooling.com

Manufactured for and on behalf of the Environment and Combustion Controls Division of Honeywell Technologies Sàrl, Ecublens, Route du Bois 37, Switzerland by its autorised representative Honeywell GmbH